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Climate projections

e Climate change projections
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The SRES B1 lower emissions scenario with less warming (not shown) projects little change in lake levels over the coming century. 
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Fig. 10. Average Great Lakes levels depend on the balance between precipitation and
corresponding runoff in the Great Lakes Basin and evaporation and outflow. The SRES
B1 lower emissions scenario with less warming (not shown) projects little change in
lake levels over the coming century. Under the SRES A1fi higher emissions scenario
(shown here), decreases on the order of 0.5 up to nearly 2.0 ft are projected towards the
end of the century.
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“2100? IT DOESN’'T KEEP ME
UP AT NIGHT!”

| essons for the Next Generation of Climate Assessments

BY LEE TRYHORN AND ART DEGAETANO

limate change is underway and the impacts are

being felt. Assessments of climate change

impacts, adaptation, and vulnerability (collec-
tively termed “climate assessments”) are being under-
taken to inform decision making in this environment
of uncertainty (Carter et al. 2007). The urgent need
for climate information for management and adapta-
tion decisions has led to an increase in the number
of climate assessments being performed across the
United States (National Assessment Synthesis Team
2001; New England Regional Assessment Group 2001;
Frumbhoffet al. 2007; Titus et al. 2009; Jacobson et al.
2009; Moser et al. 2009; Karl et al. 2009; NYSERDA
ClimAID Team 2010). Assessment methodologies
have gradually evolved and increased in number
(Carter et al. 2007), and this trend is likely to con-
tinue. In recent years, climate assessments have been
progressively propelled from exclusively research-
oriented summaries or activities toward analytical
frameworks that are designed for practical decision
making (Carter et al. 2007). The latest climate as-
sessments (the “new generation”) are often required

to formulate comprehensive adaptation alternatives
or, at the very least, recommendations that will guide
the choice of alternatives. This transition is occur-
ring with mixed success, as the aims of research and
decision analysis differ somewhat in their treatment
of uncertainty (Dessai and Hulme 2004; Rayner et al.
2005). Research seeks to understand and minimize
uncertainty, whereas decision analysis aims to man-
age uncertainty in order to prioritize and carry out
actions (Carter et al. 2007).

Despite the increase in assessments that deal with
adaptation alternatives, and the increasing recogni-
tion that climate impacts and adaptation are unique
issues in each community (Miles et al. 2006; Lynch
and Brunner 2007; Christoplos et al. 2009; Brunner
and Lynch 2010a,b), there has continued to be a lack
of practical advice for adaptation decision making
at the local level (Arnell 2010). This is particularly
true when considering smaller, less urbanized com-
munities. There are a number of examples of larger
well-resourced communities taking adaptation action
(Lowe et al. 2009; NYC Climate Change Adaptation
Task Force), but at smaller scales communities that

are proactive with adaptation are a rarity. The attitude
is captured by the quote used for the title of this essay
from a water supply plant manager when asked about
future planning efforts.

The focus of this essay is therefore ways in which
assessments can make themselves more socially rel-
evant (i.e., better link climate science to real-world
problems being faced by communities) and success-
fully meet the new demands that are being asked of
them. This essay draws on experiences from the 2010
Integrated Assessment for Effective Climate Change
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Projection

Climate time Hydrologic Projection Projection lake
Study data Grid Scenario period Run type model NBS levels
Cohen (1986) 2 GCMs 6.2° lat X 8.8° lon 2 X CO, — Steady state Water balance GL: —4% to —
calculations —21%

Marchand 1 GCM 4°lat X 5°lon 2 X CO, — Steady state Great Lakes — SUP: —0.21 m and
et al. levels/flow ONT: —0.85m
(1988) model

Croley (1990) 3 GCMs 5.4°lat X 7.5° lon 2 X CO, — Steady state GLERL suite SUP: —26% and —

ERI: —87%

Hartmann 3 GCMs 5.4°lat X 7.5° lon 2 X CO, — Steady state GLERL suite SUP: —26% and SUP: —0.47m and
(1990) ONT: —28% MI-HUR: —1.59m

Smith (1991) 3 GCMs 5.4° lat X 7.5° lon 2 X CO, — Steady state GLERL suite — SUP: —0.45m and

MI-HUR: —1.58 m

Mortsch and 4 GCMs 5.0°lat X 6.6° lon 2 X CO, — Steady state GLERL suite — SUP: —0.39m and
Quinn MI-HUR: —1.60m
(1996)

Croley et al. Transposed — — — — GLERL suite GL: 1% to —

(1996) observed —54%
data
Chao (1999) 4 GCMs 4.1° lat X 5.2° lon IPCC Second 2050 Transient GLERL suite — SUP: —0.5m and
Assessment MI-HUR —0.9m
Report (AR2)

Mortsch et al. 2 GCMs 3.1°1at X 3.8° lon +1% CO,yr ! 2050 Transient GLERL suite — SUP: —0.16 m and
(2000) MI-HUR: —0.49m

Lofgren et al. 2 GCMs 3.1°lat X 3.8° lon +1% CO,yr* 2090 Transient GLERL suite — SUP: —0.16 m and
(2002) MI-HUR -0.52m

Hayhoe et al. 3 CMIP3 2.4°lat X 2.8° lon SRES A1FI 2070-99 Transient GLERL suite — SUP: —0.2m and
(2010) GCMs MI-HUR: —0.55m

Angel and 23 CMIP3 2.5°1at X 2.8° lon SRES B1, 2080-94 Transient GLERL suite — MI-HUR: —0.25m
Kunkel GCMs AlB, for Bl to —0.41m
(2010) and A2 for A2

MacKay and 1 RCM 22.5km SRES A2 2021-50 Transient RCM hydrologic ERI: —9% and SUP: —0.03m and
Seglenieks components SUP: +1% ERI: —0.06 m
(2013) and CGLRRM

Music et al. 3 RCMs 45-50km SRES A2 2041-70 Transient RCM hydrologic MI-HUR: —

(2015) components +1%
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Eddy-covariance system installed March 2017 on Whitefish Bay (courtesy Peter Blanken)




Resolving Hydrometeorological Data
Discontinuities along an International Border

ANDREW D. GRONEWOLD, VINCENT FORTIN, ROBERT CALDWELL, AND JAMES NOEL

hydrologic cycle of large river and lake basins

often require a broad suite of data and models
ranging from in situ and satellite-derived measure-
ments of (among other variables) precipitation, air
and surface water temperature, energy fluxes, and
soil moisture (Rodell et al. 2004; Trenberth et al.
2007) to conceptual and process-based models applied
across varying time and space scales (Loaiciga et al.
1996; Silberstein 2006). Many North American (and
other continental) hydrologic datasets and models,
however, are susceptible to variations in monitoring
infrastructure and data dissemination protocols when
watershed, political, and jurisdictional boundaries
do not align. This is a challenge facing hydrologic
science professionals studying any freshwater basin
that intersects an international boundary.

M onitoring, understanding, and forecasting the
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